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CIRCULATION PHENOMENA IN STEFAN DIFFUSION*
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Abstract— Coupled diffusion and Navier—Stokes equations are used to analyze Stefan diffusion. Numerical

solutions of the diffusion and hydrodynamic equations show the existence of circulation patterns for

the “stagnant” species in a binary system. These results establish that the frequently made simplifying

assumption that the non-volatile species in Stefan diffusion is stagnant is invalid. Results are presented
showing how the flux and velocity profiles depend on the dimensions of the system.,

NOMENCLATURE

half-channel width;

total concentration;

concentration of 4;

concentration of B;

diffusivity;

dimensionless molar flux of 4;
dimensionless molar flux of B;
z-component of dimensionless molar flux
of A;

z-component of dimensionless molar flux
of B;

channel length;

molecular weight of 4;

molecular weight of B;

mass flux of A4 relative to stationary
coordinates;

mass flux of B relative to stationary
coordinates;

molar flux of A4 relative to stationary
coordinates;

molar flux of B relative to stationary
coordinates;

x-component of the molar flux of A4 relative
to stationary coordinates;

z-component of the molar flux of 4 relative
to stationary coordinates;

x-component of the molar flux of B relative
to stationary coordinates;

z-component of the molar flux of B relative
to stationary coordinates;

pressure;

x-component of the mass average velocity;
dimensionless x-component of the mass
average velocity;

z-component of the mass average velocity;
z-component of the mean mass average
velocity;
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\2 mass average velocity;

V, dimensionless z-component of the mass
average velocity;

|74 dimensionless z-component of the mean

mass average velocity;
X, dimensionless distance in x-direction;

v4, mole fraction of A;

vy,  mole fraction of B;

yo,  mole fraction of A at z = 0;

y, molefractionof Aatz=L;

Z, dimensionless distance in z-direction.
Greek symbols

A, ratio of channel length to half-channel width;

A viscosity;

0, density;

v, stream function;

wy4, mass fraction of A;

wg, mass fraction of B.

INTRODUCTION

IN THIS paper we question the well known and widely
accepted statement [ 1, 2] that the solvent in a tube or
channel through which a solute is diffusing is stagnant.
The study of the diffusion of a solute gas through a
stagnant gas in a tube or channel is often referred to
as Stefan diffusion. Heinzelmann et al. [3] have dis-
cussed difficulties in obtaining exact solutions to the
Stefan diffusion problem and have used the Taylor
diffusion model to estimate concentration profiles.
Radial effects in a Stefan diffusion tube have been
investigated by Rao and Bennett [4], who numerically
solve a two-dimensional diffusion equation assuming
a parabolic velocity profile. In a latter publication [5]
they postulate, but do not confirm, the existence of
circulation patterns in the Stefan diffusion tube. It is
the purpose of this paper to obtain solutions to the
coupled hydrodynamic and binary diffusion equations,
which are applicable to Stefan diffusion. The existence
of circulation patterns is established and results are
obtained for the velocity profiles.
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HYDRODYNAMIC AND DIFFUSION EQUATIONS

The Navier-Stokes equations in two-dimensional
rectangular coordinates are
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where u and v are the components of the mass average
velocity in the transverse x-direction and axial z-direc-
tion, respectively. For a fluid in a channel, the boundary
conditions at the wall x = a and at the wall x = —aq are

u(+a,z) =0 3
v(ta,z)=0. 4

At the inlet z = 0 and at the exit z = L of the channel,
the x-component of the velocity is taken to be zero:

u(x,0) =0 (3
u(x,L)=10. ]

The z-component of the velocity at the exit of the
channel is taken to be constant. The boundary con-
dition for the z-component of the velocity at z =0 is
more complex, involving coupling between the hydro-
dynamic and diffusion equations. It is discussed below.

Solving the Navier-Stokes equations is greatly facili-
tated if the density p and the viscosity p are constant.
For this case, it is convenient to introduce the stream
function ¥(x, z), which is related to the velocity com-
ponents through the equations

W
U= % (N
-
ST @®)

For the case of steady creeping flow, the inertial terms
can be neglected and the equation for the stream

function becomes
Vi = 0. )]

The equations relating the mass fluxes to the mass
fractions for a binary system are

ng = —pDVw,+pwyv (10

(1
where n, and np are the mass fluxes relative to
stationary coordinates of component 4 and component
B, respectively, and v is the mass average velocity. For
a gaseous system, it is useful to formulate these equa-
tions in terms of molar fluxes and mole fractions. We
obtain

Ny= —cD(1+aVa) ' Vya+ecpav

ng = —pDVwg+ puwgy

(12)

Np = —cD(1+ag,ys) " 'Vyp+cysy (13)
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M,
=——1 14
2975 3 M, (14)
Mp
=-—— 1 15
Xpa M, (15

where N, and Ny are the molar fluxes relative to
stationary coordinates of species 4 and species B,
respectively. For a system at steady-state, the diffusion
equations are derived by combining the continuity
equations with the flux equations

V.N,=0 (16)
V.Ng=0. (1

We consider the case where a gas mixture of species

A and B is in contact with a liquid or solid of pure 4
at the interface z = 0. The concentration ¢, of species
A at the interface is taken to be its equilibrium value ¢
(18)

At the exit of the channel, the concentration of species
A is taken to have the value c;:

ca(x,0) = cp.

(19)
The boundary conditions at the walls of the channel are
Ny(ta,z)=0 20
Np{£a,2)=0. (2n

For gaseous systems, it is common and convenient to
consider the total concentration ¢ = ¢+ ¢ to be con-
stant. For this case, the boundary conditions become

calx, Ly=cy.

Yalx,0) = yo (22)
yalx, L) =y, 23)
Oya(taz)
e s 0. (24)

The important boundary condition coupling the hydro-
dynamic equations with the diffusion equation can be
derived from the condition that Ng,(x,0)=0. We
obtain

v{x,0) = [}’B(X, 01 ! [1+apqyalx, 0] !
L pln0)

3 (29)

RESULTS AND DISCUSSION

The diffusion equations and the stream function
equation for the case of M, = My were solved on a
digital computer by the method of finite differences.
In solving these equations it was convenient to intro-
duce the dimensionless variables

X = x/a (26)
Z=z/L 27
V =vL/D (28)
U=uL/D (29)
A=L/a (30)
F.=N,L/cD (31)
Fyp=NgL/cD. (32)
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The z-component of the mean velocity and the z-com-
ponent of the mean dimensionless velocity are given by

(33

(34

1
V:é—j ViX, Z)dX,
1

According to the equation of continuity, V is indepen-
dent of Z. In the calculations the mole fraction of the
volatile species 4 at the liquid-gas interface (Z = 0}
was 0-25 and the mole fraction of species A at the exit
(£ = 1) was 0:0. Figure 1 shows Np,, the z-component
of the molar flux of species B, divided by ¢i as a
function of X for Z = 025, Z = (50, and Z = Q75.
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FiG. 1. Molar flux of species B in z-direction as
a function of x/a at z/L = 025, 0-50 and 0-75.
Here Lja=1.

The value of A= L/a for this system is 1 =1. The
quantity Np,/ci of the ordinate is equal to

NBz/Ci5 = anfﬁs(x = FB’:/IF& = FB:[V' {35}

These results show that the diffusion of the volatile
species A from the liquid—gas interface to the exit pro~
duces a flux of species B, which moves down the sides
of the channel and up the center, Figures 2-4 show
similar results for systems in which 4 = 2-5, 1 = 5 and
A = 10. Interesting relations can be seen in this series
of figures. For example, when 4 = 10, the center-line
{X = 0) flux of component B at Z =075 is greater
than the center-line flux at Z = (-50. On the other hand,
when A = 1, the reverse is true. Figures 2 and 3 give
intermediate cases. It can be seen from these figures
that as A is decreased, the magnitude of the center-line
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FiG. 2. Molar flux of species B in z-direction as
a function of x/a at z/L = 025, 0:50 and 073,
Here Lja = 2'5.
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F1G. 3. Molar flux of species B in z-direction as
a function of x/a at z/L = 025, 0-50 and 0-75.
Here Lja = 5.

flux of species B divided by cf is also on the average
decreased. Figures 1-4 show that species B, which is
frequently referred to as the “stagnant” species, exhibits
significant circulation.
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Fi1G. 4. Molar flux of species B in z-direction as
a function of x/a at z/L = 025, 0-50 and 0-75.
Here L/a = 10.

Figure 5 gives the velocity ratio v/t = V/V as a
function of X at Z = 0-25 for four different systems
(L/a=1,25,5,10). The velocity profiles for systems
where L/a = 5 and L/a = 10 are essentially parabolic.
For the system where L/a =25, a slight deviation
from the parabolic velocity profile is noted. Finally, for
the system where L/a = 1, a substantial deviation from
the parabolic velocity profile is seen.

In summary, the coupled equations of diffusion and
fluid mechanics have been solved numerically for the
Stefan diffusion problem, and numerical results have
been presented for the flux and velocity profiles. These
results have established the existence of circulation
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F1G. 5. Mass average velocity in z-direction as a
function of x/a at z/L = 0-25 for four different
systems (L/a = 1, 25, 5, 10).

patterns and have shown that the widely accepted

statement that the solvent in Stefan diffusion is stagnant

is invalid.
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PHENOMENE DE CIRCULATION EN DIFFUSION DE STEFAN

Résumé—Les équations couplées de la diffusion et de Navier—Stokes sont utilisées afin d’analyser la
diffusion de Stefan. Les solutions numériques des équations de diffusion et de Navier—Stokes montrent
T'existence de contours de circulation pour les espéces “immobiles” dans un systéme binaire. Ces résultats
établissent que 'hypothése simplificatrice fréquemment utilisée suivant laquelle les espéces non volatiles
demeurent immobiles dans la diffusion de Stefan n’est pas valable. Des résultats sont présentées qui
montrent la dépendance des profils de flux et de vitesse sur les dimensions du systéme.

ZIRKULATIONSERSCHEINUNGEN IM STEFAN-STROM

Zusammenfassung— Der Stefan-Strom wird mit gekoppelten Diffusions- und Navier-Stokes-Gleichungen

untersucht. Die numerischen Losungen der Diffusionsgleichungen und der hydrodynamischen Glei-

chungen zeigen das Vorhandensein von Zirkulationserscheinungen fiir die schwerer fliichtige Komponente

eines bindren Systems. Diese Ergebnisse belegen, daB die hiufig getroffene vereinfachende Voraussetzung

des Stillstehens der weniger fliichtigen Komponente ungiiltig ist. Die Ergebnisse zeigen die Abhiingigkeit
der Stromungs- und Geschwindigkeitsprofile von den Abmmessungen des Systems.
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ABJIEHME LUPKYJIALUUNA NMPU JUPPY3IUU CTERPAHOBCKOI'O THIIA

Anmotamms — i asanusa nuddysuu crepaHOBCKOro TUNA HCHONB3YIOTCA ypaBHEHHs aubdy3un
u Hasbe-Ctokca. UuCrNeHHBIE pelueHHs ypasHeHHH nudbdy3uH W rHAPOIMHAMMKH TIOKa3bIBAIOT
HAJIMYHEe UHUPKYJIALUMH AN «3aCTOABIIMXCA» YACTHL B OHHAPHBEIX CHCTEMax. OTH DPe3ynbTaThl HE
MOATBEPKAAIOT CHPABEAIHBOCTD YaCTO BLICKA3bIBAEMOTO MPEANONOXKEHHS O HEMOABHXKHOCTH He-
nmeryunx vactuu npd auddysun credanosckoro Tuma. IIpHBOAATCA OdaHHbIE, NMOKa3bIBAIOLIHE
3aBUCHMOCTD NpOodHIiieH MOTOKA H CKOPOCTH OT XapaKTEPHBIX Pa3MEPOB CHCTEMBL.
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