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a, half-channel width; 

G total concentration; 

CA9 concentration of A; 

cB, concentration of B; 

D, diffusivity ; 
F Al dimensionless molar flux of A; 

F B7 dimensionless molar flux of B; 
F AZ? z-component of dimensionless molar flux 

ofA; 
F BZT z-component of dimensionless molar flux 

ofB; 

L, channel length; 

MA, molecular weight of A; 

MB, molecular weight of B; 

nA? mass flux of A relative to stationary 
coordinates; 

nB, mass flux of B relative to stationary 
coordinates; 

NA, molar flux of A relative to stationary 
coordinat&; 

NBT molar flux of B relative to stationary 
coordinates; 

N Ax, x-component of the molar flux of A relative 
to stationary coordinates; 

N AZ? z-component of the molar flux of A relative 
to stationary coordinates; 

N Bx, x-component of the molar flux of B relative 
to stationary coordinates; 

N BZ? z-component of the molar flux of B relative 
to stationary coordinates; 

P? pressure; 

u, x-component of the mass average velocity; 
U, dimensionless x-component of the mass 

average velocity; 

0, z-component of the mass average velocity; 
c, z-component of the mean mass average 

velocity; 
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Abstract-Coupled diffusion and Navier-Stokes equations are used to analyze Stefan diffusion. Numerical 
solutions of the diffusion and hydrodynamic equations show the existence of circulation patterns for 
the “stagnant” species in a binary system. These results establish that the frequently made simplifying 
assumption that the non-volatile species in Stefan diffusion is stagnant is invalid. Results are presented 

showing how the flux and velocity profiles depend on the dimensions of the system. 
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h 

v, 

X, 
YA, 
YB, 
Yo, 
YL, 
z, 

mass average velocity; 
dimensionless z-component of the mass 
average velocity; 
dimensionless z-component of the mean 
mass average velocity; 
dimensionless distance in x-direction; 
mole fraction of A; 

mole fraction of B; 

mole fraction of A at z = 0; 
mole fraction of A at z = L; 

dimensionless distance in z-direction. 

Greek symbols 

1, ratio of channel length to half-channel width; 

u viscosity; 

P9 density; 

*9 stream function; 

OA, mass fraction of A; 

OBT mass fraction of B. 

INTRODUCTION 

IN THIS paper we question the well known and widely 
accepted statement [l, 21 that the solvent in a tube or 
channel through which a solute is diffusing is stagnant. 
The study of the diffusion of a solute gas through a 
stagnant gas in a tube or channel is often referred to 
as Stefan diffusion. Heinzelmann et al. [3] have dis- 
cussed difficulties in obtaining exact solutions to the 
Stefan diffusion problem and have used the Taylor 
diffusion model to estimate concentration profiles. 
Radial effects in a Stefan diffusion tube have been 
investigated by Rao and Bennett [4], who numerically 
solve a two-dimensional diffusion equation assuming 
a parabolic velocity profile. In a latter publication [S] 
they postulate, but do not confirm, the existence of 
circulation patterns in the Stefan diffusion tube. It is 
the purpose of this paper to obtain solutions to the 
coupled hydrodynamic and binary diffusion equations, 
which are applicable to Stefan diffusion. The existence 
of circulation patterns is established and results are 
obtained for the velocity profiles. 
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HYDRODYNAMIC AND DIFFUSION EQUATIONS 

The Navier-Stokes equations in twodime~ional 
rectangular coordinates are 

-acx<a 

O<Z<L 

where u and u are the components of the mass average 
velocity in the transverse x-direction and axial zdirec- 
tion, respectively. For a fluid in a channel, the boundary 
conditions at the wall x = a and at the wall x = -a are 

u(+a,z) = 0 (3) 

u(t_a,z) = 0. (4) 

At the inlet z = 0 and at the exit z = L of the channel, 
the x-component of the velocity is taken to be zero: 

u(x, 0) = 0 (5) 

u(x, L) = 0. (6) 

The z-component of the velocity at the exit of the 
channel is taken to be constant. The boundary con- 
dition for the z-component of the velocity at z = 0 is 
more complex, involving coupling between the hydro- 
dynamic and diffusion equations. It is discussed below. 

Solving the Navier-Stokes equations is greatly facili- 
tated if the density p and the viscosity p are constant. 
For this case, it is convenient to introduce the stream 
function $(x, z), which is related 
ponents through the equations 

aj/ 
r4 = 5 

ait, 
v= -dx- 

(7) 

(8) 

For the case of steady creeping flow, the inertial terms 
can be neglected and the equation for the stream 
function becomes 

v”* = 0. (9) 

to the velocity com- 

The equations relating the mass fluxes to the mass 
fractions for a binary system are 

II_., = -pDVw,,+pwAv (10) 

tsB = -pDVw&-pw,v Wf 

where n,, and n, are the mass fluxes relative to 
stationary coordinates of component A and component 
B, respectively, and v is the mass average velocity. For 
a gaseous system, it is useful to formulate these equa- 
tions in terms of molar fluxes and mole fractions. We 
obtain 

NA = -cD(I+a,,y,,)-‘Vy~+cy,v (12) 

NB = -cD(l+uBIye)-‘Vya+cysv (13) 

(14) 

(151 

where NA and N, are the molar fluxes relative to 
stationary coordinates of species A and species B, 
respectively. For a system at steady-state, the diffusion 
equations are derived by combining the continuity 
equations with the flux equations 

V.NR=O (16) 

V.NB=O. (17) 

We consider the case where a gas mixture of species 
A and B is in contact with a liquid or solid of pure A 
at the interface z = 0. The concentration CA of Specks 

A at the interface is taken to be its equilibrium value c0 : 

CA(X, 0) = co. (181 

At the exit of the channel, the concentration of species 
A is taken to have the value cL: 

c,(x, L) = CL. WY 

The boundary conditions at the walls of the channel are 

N_&( fa, 2) = 0 (20) 

&( i a, 2) = 0. (21) 

For gaseous systems, it is common and convenient to 
consider the total concentration c = CA + ca to be con- 
stant. For this case, the boundary conditions become 

Y,k 0) = Yo (221 

Y&3 u = YL (23) 

The important boundary condition coupling the hydro- 
dynamic equations with the diffusion equation can be 
derived from the condition that IvB,(x,O) = 0. We 
obtain 

v(x, 0) = CYB(& 011 - 1 [ 1-f %lAYi& oa- 1 

x D aYB(x~ O) 
-. (25) 

ai! 

RESULTS AND DISCUSSION 

The diffusion equations and the stream function 
equation for the case of MA = MB were solved on a 
digital computer by the method of finite differences. 
In solving these equations it was convenient to intro- 
duce the dime~~onl~s variables 

x = x/a (26) 
z = z/L. (27) 
V = vL,‘D (28) 

U = uL/D (29) 

L = L/a (30) 
F.., = N, L/CD (31) 
FB = N,, L/CD. (321 
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The z-component of the mean velocity and the z-com- 
ponent of the mean dimensionless velocity are given by 

V(X, z) dx (33) 

%=i i F V(X, Z)dX, cw 
--I 

According to the equation of con~nuity, V is indepen- 
dent of 2. In the calculations the mole fraction of the 
volatile species A at the liquid-gas interface (Z = 0) 
was 0.25 and the mole fraction of species A at the exit 
(Z = 1) was 0.0. Figure 1 shows Nsz, the z-component 
of the molar flux of species B, divided by ci; as a 
function of X for Z = 0.25, Z = 050, and Z = 0+75. 

-0.6 

FIG. 1. Molar flux of species B in z-direction as 
a function of x/u at z/L = e2.5, 050 and 075. 

Here L/a = 1. 

The value of I = L/u for this s~tem is I = 1. The 
quantity NBm/cti of the ordinate is equal to 

N&/C% = r&/R& = F&is”, = F&/I? (35) 

These results show that the diffusion of the volatile 
species A from the liquid-gas interface to the exit pro- 
duces a flux of species B, which moves down the sides 
of the channel and up the center. Figures 2-4 show 
similar results for systems in which ;1= 2.5, R = 5 and 
1= 10. Interesting relations can be seen in this series 
of figures. For examI?Ie, when tl = 10, the center-line 
(X = 0) flux of component B at Z = 075 is greater 
than the center-line flux at Z = &%. On the other hand? 
when 2 = 1, the reverse is true. Figures 2 and 3 give 
intermediate cases. It can be seen from these figures 
that as n is decreased, the magnitude of the center&e 
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FIG. 2. Molar flux of species B in z-direction as 
a function of x/a at z/L = 025, 050 and 07% 

Here L/u = 2.5. 

-0.8 

FIG. 3. Molar flux of species B in z-direction as 
a function of x/a at z/L = @25, Q50 and 0.75. 

Here L/a = 5. 

flux of species B divided by et; is also on the average 
decreased. Figures l-4 show that species B, which is 
fkequently referred to as the “stagnant” species, exhibits 
signifkant circulation. 
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FIG. 4. Molar flux of species B in z-direction as FIG. 5. Mass average velocity in z-direction as a 
a function of x/a at z/L = 0.25, 0.50 and 0.75. function of x/a at z/L = 0.25 for four different 

Here L/a = 10. systems (L/a = 1, 2.5, 5, 10). 

Figure 5 gives the velocity ratio vJC = V/i7 as a 

function of X at Z = 0.25 for four different systems 

(L/a = 1,235, 10). The velocity profiles for systems 

where L/a = 5 and L/a = 10 are essentially parabolic. 

For the system where L/a = 2.5, a slight deviation 

from the parabolic velocity profile is noted. Finally, for 

the system where L/a = 1, a substantial deviation from 

the parabolic velocity profile is seen. 

In summary, the coupled equations of diffusion and 

fluid mechanics have been solved numerically for the 

Stefan diffusion problem, and numerical results have 

been presented for the flux and velocity profiles. These 

results have established the existence of circulation 
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patterns and have shown that the widely accepted 

statement that the solvent in Stefan diffusion is stagnant 

is invalid. 
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PHENOMENE DE CIRCULATION EN DIFFUSION DE STEFAN 

R&m-Les huations couplees de la diffusion et de Navier-Stokes sont utilisks afin d’analyser la 
diffusion de Stefan. Les solutions numeriques des huations de diffusion et de Navier-Stokes montrent 
l’existence de contours de circulation pour les esp&ces “immobiles” dans un syst&me binaire. Ces rtsultats 
ttablissent que l’hypothbe simplificatrice fr&quemment utilisb suivant laquelle les espQes non volatiles 
demeurent immobiles dans la diffusion de Stefan n’est pas valable. Des r&sultats sont p&sent&es qui 

montrent la dkpendance des profils de flux et de vitesse sur les dimensions du systhme. 

ZIRKULATIONSERSCHEINUNGEN IM STEFAN-STROM 

Zusammenfassung-Der Stefan-Strom wird mit gekoppelten Diffusions- und Navier-Stokes-Gleichungen 
untersucht. Die numerischen LGsungen der Diffusionsgleichungen und der hydrodynamischen Glei- 
chungen zeigen das Vorhandensein von Zirkulationserscheinungen fi.ir die schwerer fltichtige Komponente 
eines bin&en Systems. Diese Ergebnisse belegen, daD die hiiufig getroffene vereinfachende Voraussetzung 
des Stillstehens der weniger fliichtigen Komponente ungtiltig ist. Die Ergebnisse zeigen die AbhLngigkeit 

der Striimungs- und Geschwindigkeitsprofile von den Abmessungen des Systems. 
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IIBJ-IEHRE JQiPKYJIX~MM l-IPM )Jki@fDY3I?ki CTE@AHOBCKOTO TLlIIA 

hIffOT%3UllS - ,@I aHaJtti3a &M$y3kiH CTW$BHOBCKOrO Tltlla HCIlOJIb3YKlTCR J’ptlBHeHHR AH+&‘3HH 

W HaBbt?-CTOKCa. %CJleHHbIe peUieHHR YPaBHeHHti AH445’35iH li IWAPOARHBMHKB llOKa3bIBNOT 

HaTIWYUe UHpKyJI5IUtiH AJIR <<3BCTORBIUHXCR)) WCTHU B 6iiHapHbIX CHCTeMSLX. 3TSi pt?3yJIbTaTbl He 

IIO~T~p,KUiWOT CIIpaBeUiWW,CTb YaCTO BblCKa3bIBaeMOrO II~AIIO~O~eHHSl 0 HelIOABFflKHOCTH He- 

JIeTy’iKX WCTAU IIPK &J4ky3Hli CTe&iHOBCKOrO TN-la. npHBOARTC5l A(LHHbIt?, IIOKa3bIBZl~IUEE 

3aBUCUMOCTb IIpOt$HJI& ,-IOTOKa I4 CKOPOCTH OT XapaKTCpHbIX pa3MCpOB CUCTCMbI. 


